Problem 2.4

Circling particle and force

Two particles of mass m and M undergo uniform circular motion about each other at a separation R under the influence of an attractive constant force F. The angular velocity is ω radians per second. Show that $R=\left(F / \omega^{2}\right)(1 / m+1 / M)$.

Solution

The situation is illustrated below.

Both masses rotate about the same point C along the line connecting them, but they are not equidistant from it unless the masses are equal. If mass m is at a distance x from C, then mass M is at a distance $R-x$ from C. Taking C to be the origin, draw the free-body diagrams for m and M.

Newton's second law states that force is equal to mass times acceleration.

$$
\mathbf{F}=m \mathbf{a}
$$

If we use polar coordinates, then this vector equation results in the following two scalar equations.

$$
\begin{aligned}
& F_{r}=m a_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right) \\
& F_{\theta}=m a_{\theta}=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})
\end{aligned}
$$

Applying these two equations for m and M, we get

$$
\begin{aligned}
& \text { Mass } m \\
& -F=m\left(-x \omega^{2}\right) \\
& 0=m(0+0) \\
& \text { Mass } M \\
& -F=M\left[-(R-x) \omega^{2}\right] \\
& 0=M(0+0) \text {. }
\end{aligned}
$$

Note that the negative sign on the left side of each equation is because the radial force points towards the origin. There are two equations for the two unknowns, x and R, so we can solve for both of them.

$$
F=m x \omega^{2}
$$

Divide both sides by $m \omega^{2}$.

$$
x=\frac{F}{m \omega^{2}}
$$

Substitute this result into the second equation.

$$
-F=M\left[-\left(R-\frac{F}{m \omega^{2}}\right) \omega^{2}\right]
$$

Divide both sides by $-M \omega^{2}$.

$$
\frac{F}{M \omega^{2}}=R-\frac{F}{m \omega^{2}}
$$

Solve for R.

$$
R=\frac{F}{m \omega^{2}}+\frac{F}{M \omega^{2}}
$$

Therefore,

$$
R=\frac{F}{\omega^{2}}\left(\frac{1}{m}+\frac{1}{M}\right) .
$$

The quantity in parentheses is often written as $1 / \mu$, where μ is known as the reduced mass.

